Randomized Approximation and Deterministic LP Rounding Lecturer:Arindam Khan Date: 14th March, 2014

1 MaxCut

- G = (V, E) is an undirected graph.
- A cut(S,T) is a partition of V.
- A cut edge is an edge with one end point in S and the other end point in T.
- The size of a cut is the number of cut edges.
- MAX-CUT: Find a largest size cut in G: NP-hard.
- Note: Finding a smallest size cut in G (called the MIN-CUT problem) can be solved in polynomial time using maximum flow algorithms.

2 Randomized Approximation Algorithm for MAX-CUT

2.1 Algorithm:

- For each $v \in V$, add v to a set H with probability 1/2.
- Let $T := V \setminus H$.
- The output cut is the set of edges between H and T.

2.2 Analysis:

- Let X_e be the random variable which is 1 if if the edge e is in the cut and 0 otherwise.
- What is $Pr[X_e = 1]$?

- Let e = uv. Then e is in the cut if and only if either $u \in H$ and $v \in T$ or $u \in T$ and $v \in H$.

- $Pr[X_e = 1] = Pr[(u \in H \cap v \in T) \cup (u \in T \cap v \in H)].$
- $-Pr[X_e = 1] = Pr[(u \in H \cap v \in T)] + Pr[(u \in T \cap v \in H)].$
- $-Pr[u \in H \cap v \in T] = Pr[u \in H] \cdot Pr[v \in T] = \frac{1}{2} \cdot \frac{1}{2} = 1/4.$
- $-Pr[u \in T \cap v \in H] = Pr[u \in T] \cdot Pr[v \in H] = \frac{1}{2} \cdot \frac{1}{2} = 1/4.$
- Hence $Pr[X_e = 1] = 1/4 + 1/4 = 1/2.$

• **Expectation:** What is the expected value of X_e i.e., $\mathbb{E}[X_e]$?

 $-\mathbb{E}[X_e] = \sum x \times \Pr[X_e = x] = 0 \times \Pr[X_e = 0] + 1 \times \Pr[X_e = 1] = \Pr[X_e = 1] = 1/2.$

• Define the random variable $X := \sum_{e \in E} X_e$. What is $\mathbb{E}[X]$?

 $(\mathbb{E}[X])$ is the expected size of the cut produced by the algorithm.)

• Linearity of Expectation:

Let $X_1.X_2,...,X_n$ be discrete random variables and $X = \sum_{i=1}^n X_i$. Then $\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \mathbb{E}[X_i]$.

- By Linearity of Expectation $\mathbb{E}[X] = \sum_{e \in E} \mathbb{E}[X_e] = |E|/2.$
- Deduce that in G there exists a cut of size at least |E|/2.
 - If all cuts have size $\langle |E|/2$, the average will also be $\langle |E|/2$.
 - We can take |E| to be the upper bound on Opt.
 - Thus, $Opt/2 \le |E|/2 \le ALGO \le Opt \le |E|$
- The randomized algorithm is a 1/2 approximation algorithm in expectation. one can derandomize it using conditional expectations.
- For maximization problems, sometimes $\frac{1}{c}$ -approximation algorithms are also called *c*-approximation algorithms for $c \ge 1$. So, the above algorithm is a 2-approximation algorithm in that notation.

3 Integer Linear Program for Set Cover

- Set of items: U.
- Collection of sets \mathcal{S} .
- Maximum frequency: f i.e., each item appears in at most f sets.
- Define variable x_S for each set $S \in S$ such that $x_S = 1$ if $S \in S$ and 0 otherwise.
- Integer Linear Program (ILP):

– Objective:	minimize $\sum_{S \in \mathcal{S}} c(S) x_S$
- subject to:	$\sum_{S:e\in S} x_S \ge 1, (e\in U).$
_	$x_S \in \{0,1\}, (S \in \mathcal{S}).$

- The objective minimizes the cost of the set cover.
- The constraint make sure that for each item in U at least one set containing it be picked.
- LP Relaxation:

$$\begin{array}{ll} - & \text{Objective:} & \text{minimize } \sum_{S \in \mathcal{S}} c(S) x_S \\ - & \text{subject to:} & \sum_{S:e \in S} x_S \geq 1, \quad (e \in U). \\ - & & x_S \geq 0, \quad (S \in \mathcal{S}). \end{array}$$

- The LP can be solved in polynomial time, However the solution might be fractional.
- Note that the above LP is a relaxation of IPL i.e., any feasible solution of ILP is also a feasible solution of LP. But the converse might not be true. Thus, LP obejctive value ≤ the ILP objective value in case of minimization.
- We need to round the fractional values to an integral value to get a feasible solution for the integer program.

4 Deterministic Rounding: Algorithm

- Find an optimal solution to the LP relaxation.
- Return C, the collection of all sets S with $x_S \ge 1/f$ in the solution.

5 Deterministic Rounding: Analysis

- Each element appears in at most f sets. So one of the sets must be picked to the extent of at least 1/f in the fractional cover. But then that set will be selected in the rounding.
- $\bullet\,$ Thus ${\mathcal C}$ covers all the elements and is a valid set cover.
- The rounding increases x_S by a factor of at most f.
- Let LP be the value of the LP objective. Then, $LP \leq \mathsf{Opt}$ as Opt is the ILP objective value.
- $LP \leq \mathsf{Opt} \leq ALGO \leq f \cdot LP \leq f \cdot \mathsf{Opt}.$
- Thus the deterministic rounding gives f approximation.
- Exercise: Give an example where the algorithm gives $\Omega(f)$ -approximation and thus the analysis is tight.
- Note: $O(\log n)$ and f are incomparable.

6 Other Techniques

- Randomized Rounding: $O(\log n)$ -approximation for Set Cover.
- Primal Dual Schema: $O(\log n)$ -approximation for Set Cover.
- Semidefinite Programming: 0.878-approximation for MaxCut.

7 Resources:

I am following chapter 1.2 (An introduction to the techniques and to linear programming: the set cover problem) and 1.3 (A deterministic rounding algorithm) from [1] for the lectures. The book is freely available online: http://www.designofapproxalgs.com/. You can also see chapter 14.1 Rounding Applied to Set Cover from [2]. Vertex cover is a special case of set cover with f = 2. In chapter 11.6 of the Kleinberg-Tardos textbook, similar LP rounding is given for 2-approximation for the vertex cover problem.

References

- Williamson, David P and Shmoys, David B. The Design of Approximation Algorithms. Cambridge University Press 2011.
- [2] Vazirani, Vijay V. Approximation Algorithms. Springer 2001.